About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch
Cyberknife Radiosurgery

Individual Beam Sharpening Improves Composite Dose Fall-off Near a Target for Non-isocentric Cyberknife Radiosurgery (341-348)

Stereotactic radiosurgery (SRS) refers to a high dose of radiation delivered to a focal region of interest while maximizing the steep dose gradient to minimize dose to the surrounding normal tissues. Multiple factors can influence the dose fall-off, and the relative importance of such factors have not yet been characterized for non-isocentric Cyberknife SRS. Our aim was to investigate whether the composite dose fall-off near a target may be enhanced via sharpening the lateral beam profile (or penumbra) of each individual beam. Cyberknife beam profiles were fitted and parameterized to obtain a characteristic penumbra function for each collimator size. Simulated beam profiles with progressively sharper penumbras were then generated, and used to perform simulated treatment planning on seven pediatric intracranial arteriovenous malformations (AVMs) cases. Penumbra size was found to significantly influence the peripheral dose fall-off. Peripheral dose volumes were reduced by 5 to 10% with reductions in penumbra size ranging from 40 to 80%. Dose conformality and homogeneity were not significantly changed with decreasing penumbra size. Therefore, individual beam sharpening provides a straightforward way of improving the composite dose fall-off for non-isocentric Cyberknife SRS.

Key words: Radiosurgery; Cyberknife; Penumbra; Arteriovenous malformation.




This article can be cited as:
Wahl, M., Hwang, A., Nakamura, J., Barani, I., Fogh, S., Sneed, P., McDermott, M., Sahgal, A., Ma, L., Individual Beam Sharpening Improves Composite Dose Fall-off Near a Target for Non-isocentric Cyberknife Radiosurgery Technol Cancer Res Treat. 12, 341-348 (2013) DOI: 10.7785/tcrt.2012.500322

References

1. Gerszten, P. C., Burton, S. A., Ozhasoglu, C., Welch, W. C. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine (Phila Pa 1976) 32, 193-199 (2007). [Crossref]
2. Kollova, A., Liscak, R., Novotny, J., Jr., Vladyka, V., Simonova, G., Janouskova, L. Gamma knife surgery for benign meningioma. J Neurosurg 107, 325-336 (2007). [Crossref]
3. Linskey, M. E., Andrews, D. W., Asher, A. L., Burri, S. H., Kondziolka, D., Robinson, P. D., Ammirati, M., Cobbs, C. S., Gaspar, L. E., Loeffler, J. S., McDermott, M., Mehta, M. P., Mikkelsen, T., Olson, J. J., Paleologos, N. A., Patchell, R. A., Ryken, T. C., Kalkanis, S. N. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96, 45-68 (2010). [Crossref]
4. Sahgal, A., Bilsky, M., Chang, E. L., Ma, L., Yamada, Y., Rhines, L. D., Letourneau, D., Foote, M., Yu, E., Larson, D. A., Fehlings, M. G. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine 14, 151-166 (2011). [Crossref]
5. Stafford, S. L., Pollock, B. E., Leavitt, J. A., Foote, R. L., Brown, P. D., Link, M. J., Gorman, D. A., Schomberg, P. J. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55, 1177-1181 (2003). [Crossref]
6. Flickinger, J. C., Kondziolka, D., Pollock, B. E., Maitz, A. H., Lunsford, L. D. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys 38, 485-490 (1997). [Crossref]
7. Korytko, T., Radivoyevitch, T., Colussi, V., Wessels, B. W., Pillai, K., Maciunas, R. J., Einstein, D. B. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys 64, 419-424 (2006). [Crossref]. 8. Adler, J. R., Jr., Chang, S. D., Murphy, M. J., Doty, J., Geis, P., Hancock, S. L. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69, 124-128 (1997). [Crossref]
9. O’Malley, L., Pignol, J. P., Beachey, D. J., Keller, B. M., Presutti, J., Sharpe, M. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery. Phys Med Biol 51, 2537-2548 (2006). [Crossref]
10. Echner, G. G., Kilby, W., Lee, M., Earnst, E., Sayeh, S., Schlaefer, A., Rhein, B., Dooley, J. R., Lang, C., Blanck, O., Lessard, E., Maurer, C. R., Jr., Schlegel, W. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54, 5359-5380 (2009). [Crossref]
11. Guerrero, M., Li, X. A., Ma, L. A technique to sharpen the beam penumbra for Gamma Knife radiosurgery. Phys Med Biol 48, 1843-1853 (2003). [Crossref]
12. Sharpe, M. B., Miller, B. M., Wong, J. W. Compensation of x-ray beam penumbra in conformal radiotherapy. Med Phys 27, 1739-1745 (2000). [Crossref]
13. Keller, B. M., Pignol, J. P., Presutti, J., Beachey, D. J. Intermediate energy photons (1 MV) to improve dose gradient, conformality, and homogeneity: potential benefits for small field intracranial radiosurgery. Med Phys 36, 33-39 (2009). [Crossref]
14. Flickinger, J. C., Kondziolka, D., Lunsford, L. D., Pollock, B. E., Yamamoto, M., Gorman, D. A., Schomberg, P. J., Sneed, P., Larson, D., Smith, V., McDermott, M. W., Miyawaki, L., Chilton, J., Morantz, R. A., Young, B., Jokura, H., Liscak, R. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 44, 67-74 (1999). [Crossref]
15. Smyth, M. D., Sneed, P. K., Ciricillo, S. F., Edwards, M. S., Wara, W. M., Larson, D. A., Lawton, M. T., Gutin, P. H., McDermott, M. W. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg 97, 48-55 (2002). [Crossref]
16. Paddick, I., Lippitz, B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg 105 Suppl, 194-201 (2006). [Crossref]
17. Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93 Suppl 3, 219-222 (2000). [Crossref]
18. Herbert, C., Moiseenko, V., McKenzie, M., Redekop, G., Hsu, F., Gete, E., Gill, B., Lee, R., Luchka, K., Haw, C., Lee, A., Toyota, B., Martin, M. Factors predictive of symptomatic radiation injury after linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 83, 872-877 (2012). [Crossref]
19. Ma, L., Sahgal, A., Descovich, M., Cho, Y. B., Chuang, C., Huang, K., Laperriere, N. J., Shrieve, D. C., Larson, D. A. Equivalence in dose fall-off for isocentric and nonisocentric intracranial treatment modalities and its impact on dose fractionation schemes. Int J Radiat Oncol Biol Phys 76, 943-948 (2010). [Crossref]
20. Hrbacek, J., Lang, S., Klock, S. Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm. Int J Radiat Oncol Biol Phys 80, 1228-1237 (2011). [Crossref]

This article can be accessed at PubMed:
http://www.ncbi.nlm.nih.gov/pubmed/23369157

Purchase Downloadable Article

Corporate Library

$100.00

University/Academic User

$50.00

Received: May 16, 2012; Revised: October 3, 2012; Accepted: October 18, 2012; Epub: January 25, 2013

TCRT August 2013

category image
Volume 12
No.4 (275-382)
August 2013
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500322

Michael Wahl, M.D.1
Andrew Hwang, Ph.D.1
Jean Nakamura, M.D.1
Igor Barani, M.D.1
Shannon Fogh, M.D.1
Penny Sneed, M.D.1
Michael McDermott, M.D.2
Arjun Sahgal, M.D.3
Lijun Ma, Ph.D.1*

1Department of Radiation Oncology, University of California, San Francisco 505 Parnassus Ave, San Francisco, CA, 94143-0226
2Department of Neurosurgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112
3Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario, M6G 2M5, Canada

lijunma@radonc.ucsf.edu