About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch
Computer-Assisted IMRT

Computer-Assisted, Atlas-Based Segmentation for Target Volume Delineation in Whole Pelvic IMRT for Prostate Cancer (199-206)

The purpose of this study is to evaluate whether computer-assisted segmentation is clinically feasible in target volume delineation for prostate cancer patients treated with whole pelvic IMRT. An atlas was created, comprised of 44 clinically node-negative prostate cancer patients. Three regions of interest (ROIs) were chosen for analysis: prostate, pelvic lymph nodes, and rectum. For a separate tester set of 15 patients with previously contoured ROIs by three experienced physicians, atlas-assisted contours were compared to manual contours by calculating a volumetric overlap index. In the tester set patients, the average overlap between the manually drawn and atlas-based contours for the prostate, pelvic lymph nodes, and rectum was 60%, 51%, and 64%, respectively. The volume differences were significant in the rectum and pelvic lymph nodes (p = 0.049 and p = 0.016, respectively); this was not true for the prostate. A subset analysis based on physician-specific atlases showed that the average overlap index for the pelvic lymph nodal volume increased from 51% to 60%, while the other ROIs had no significant changes. Despite significant inter-physician differences, atlas-based segmentation for pelvic lymph node delineation serves as an initial guideline for physicians, potentially improving both consistency and efficiency in contouring.

Key words: Prostate cancer; Target volume delineation; Pelvic lymph nodes; Automatic segmentation; Computer-assisted.

This article can be cited as:
Pejavar, S., Yom, S.S., Hwang, A., Speight, J., Gottschalk, A., Hsu, I-C., Roach III, M., Xia, P., Computer-Assisted, Atlas-Based Segmentation for Target Volume Delineation in Whole Pelvic IMRT for Prostate Cancer Technol Cancer Res Treat. 12, 199-206 (2013)


1. Hong, T. S., Tome, W. A., Harari, P. M. Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol 103, 92-98 (2012). [Crossref]
2. Miles, E. A., Clark, C. H., Urbano, M. T., Bidmead, M., Dearnaley, D. P., Harrington, K. J., A’Hern, R., Nutting, C. M. The impact of introducing intensity modulated radiotherapy into routine clinical practice. Radiother Oncol 77, 241-246 (2005). [Crossref]
3. Lawton, C. A., Michalski, J., El-Naqa, I., Kuban, D., Lee, W. R., Rosenthal, S. A., Zietman, A., Sandler, H., Shipley, W., Ritter, M., Valicenti, R., Catton, C., Roach, M., 3rd, Pisansky, T. M., Seider, M. Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 74, 377-382 (2009). [Crossref]
4. Pasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E., Betrouni, N. Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68, 592-600 (2007). [Crossref]
5. Zhang, T., Chi, Y., Meldolesi, E., Yan, D. Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys 68, 522-530 (2007). [Crossref]
6. Chao, K. S., Bhide, S., Chen, H., Asper, J., Bush, S., Franklin, G., Kavadi, V., Liengswangwong, V., Gordon, W., Raben, A., Strasser, J., Koprowski, C., Frank, S., Chronowski, G., Ahamad, A., Malyapa, R., Zhang, L., Dong, L. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys 68, 1512-1521 (2007). [Crossref]
7. Lawton, C. A., Michalski, J., El-Naqa, I., Buyyounouski, M. K., Lee, W. R., Menard, C., O’Meara, E., Rosenthal, S. A., Ritter, M., Seider, M. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 74, 383-387 (2009). [Crossref]
8. Adams, E. J., Convery, D. J., Cosgrove, V. P., McNair, H. A., Staffurth, J. N., Vaarkamp, J., Nutting, C. M., Warrington, A. P., Webb, S., Balyckyi, J., Dearnaley, D. P. Clinical implementation of dynamic and step-and-shoot IMRT to treat prostate cancer with high risk of pelvic lymph node involvement. Radiother Oncol 70, 1-10 (2004). [Crossref]
9. Clark, C. H., Mubata, C. D., Meehan, C. A., Bidmead, A. M., Staffurth, J., Humphreys, M. E., Dearnaley, D. P. IMRT clinical implementation: prostate and pelvic node irradiation using Helios and a 120-leaf multileaf collimator. J Appl Clin Med Phys 3, 273-284 (2002). [Crossref]
10. Li, X. A., Tai, A., Arthur, D. W., Buchholz, T. A., Macdonald, S., Marks, L. B., Moran, J. M., Pierce, L. J., Rabinovitch, R., Taghian, A., Vicini, F., Woodward, W., White, J. R. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG multi-institutional and multiobserver study. Int J Radiat Oncol Biol Phys 73, 944-951 (2009). [Crossref]
11. Fiorino, C., Reni, M., Bolognesi, A., Cattaneo, G. M., Calandrino, R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47, 285-292 (1998). [Crossref]
12. Cazzaniga, L. F., Marinoni, M. A., Bossi, A., Bianchi, E., Cagna, E., Cosentino, D., Scandolaro, L., Valli, M., Frigerio, M. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiother Oncol 47, 293-296 (1998). [Crossref]
13. Lawton, C. A., DeSilvio, M., Roach, M., 3rd, Uhl, V., Kirsch, R., Seider, M., Rotman, M., Jones, C., Asbell, S., Valicenti, R., Hahn, S., Thomas, C. R., Jr. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 69, 646-655 (2007). [Crossref]
   14. Roach, M., 3rd, DeSilvio, M., Valicenti, R., Grignon, D., Asbell, S. O., Lawton, C., Thomas, C. R., Jr., Shipley, W. U. Whole-pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. Int J Radiat Oncol Biol Phys 66, 647-653 (2006). [Crossref]
   15. Seaward, S. A., Weinberg, V., Lewis, P., Leigh, B., Phillips, T. L., Roach, M., 3rd. Improved freedom from PSA failure with whole pelvic irradiation for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 42, 1055-1062 (1998). [Crossref]
16. Dinniwell, R., Chan, P., Czarnota, G., Haider, M. A., Jhaveri, K., Jewett, M., Fyles, A., Jaffray, D., Milosevic, M. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys 74, 844-851 (2009). [Crossref]
17. Taylor, A., Rockall, A. G., Reznek, R. H., Powell, M. E. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63, 1604-1612 (2005). [Crossref]
  18. Reed, V. K., Woodward, W. A., Zhang, L., Strom, E. A., Perkins, G. H., Tereffe, W., Oh, J. L., Yu, T. K., Bedrosian, I., Whitman, G. J., Buchholz, T. A., Dong, L. Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys 73, 1493-1500 (2009). [Crossref]
19. Lu, W., Olivera, G. H., Chen, Q., Chen, M. L., Ruchala, K. J. Automatic re-contouring in 4D radiotherapy. Phys Med Biol 51, ­1077-1099 (2006). [Crossref]
20. Hu, K., Lin, A., Young, A., Kubicek, G., Piper, J. W., Nelson, A. S., Dolan, J., Masino, R., Machtay, M. Timesavings for contour generation in head and neck IMRT: Multi-institutional experience with an atlas-based segmentation method. International Journal of Radiation Oncology Biology Physics 72, S391-S391 (2008). [Crossref]
   21. Lin, A., Kubicek, G., Piper, J. W., Nelson, A. S., Dicker, A. P., ­Valicenti, R. K. Atlas-based segmentation in prostate IMRT: Timesavings in the clinical workflow. International Journal of Radiation Oncology Biology Physics 72, S328-S329 (2008). [Crossref]   

This article can be accessed at PubMed:

Purchase Downloadable Article

Corporate Library


University/Academic User


Received: May 14, 2012; Revised: August 21, 2012; Accepted: September 3, 2012; Epub: December 26, 2012.

TCRT June 2013

category image
Volume 12
No.3 (193-274)
June 2013
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500313

Sunanda Pejavar, M.D.1
Sue S. Yom, M.D., Ph.D.1
Andrew Hwang, Ph.D.1
Joycelyn Speight, M.D., Ph.D.1
Alexander Gottschalk, M.D.,  Ph.D.1
I-Chow Hsu, M.D.1
Mack Roach III, M.D.,  F.A.C.R. Ping Xia, Ph.D.1,2*

1Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
2Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA