About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch

BNNT-Mediated Irreversible Electroporation: Its Potential on Cancer Cells (459-465)

Irreversible lethal electroporation (IRE) is a new non-thermal ablation modality that uses short pulses of high amplitude static electric fields (up 1000 V/cm) to create irreversible pores in the cell membrane, thus, causing cell death. Recently, IRE has emerged as a promising clinical modality for cancer disease treatment. Here, we investigated the responses of tumour human HeLa cells when subjected to IRE in the presence of BNNTs. These consist of tiny tubes of B and N atoms (arranged in hexagons) with diameters ranging from a 1 to 3 nanometres and lengths < 2 μm. BNNTs have attracted wide attention because of their unique electrical properties. We speculate that BNNTs, when interacting with cells exposed to static electrical fields, amplify locally the electric field, leading to cell death. In this work, electroporation assays were performed with a commercial electroporator using the cell- specific protocol suggested by the supplier (exponential decay wave, time constant 20 ms) with the specific aim to compare IRE in absence and in presence of BNNTs. We observed that BNNTs have the capacity to decrease substantially the voltage required for IRE. When cells were pulsed at 800 V/cm, we observed a 2,2-fold reduction in cell survival in the presence of BNNTs compared to controls. We conclude that the death of the tumour cells exposed to IRE is strongly enhanced in the presence of BNNTs, indicating their potential therapeutic application.

Key words: Boron nitride nanotubes; Irreversible electroporation.

This article can be cited as:
Raffa, V. Riggio, C. Smith, M.W. Jordan, K.C. Cao, W. Cuschieri, A. BNNT-Mediated Irreversible Electroporation: Its Potential on Cancer Cells. Technol Cancer Res Treat. 11, 459-465 (2012). DOI: 10.7785/tcrt.2012.500258


1. Rubinsky, B. Cryosurgery. Annu Rev Biomed Eng 2, 157-189 (2000).
2. Martin, R. C. Hepatic tumor ablation: cryo versus radiofrequency, which is better? Am Surg 72, 382-90 (2006). [Crossref]
3. Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5, 321-7 (2005). [Crossref]
4. Vauthier, C., Tsapis, N., Couvreur, P. Nanoparticles: heating tumors to death? Nanomedicine (Lond) 6, 99-109 (2011). [Crossref]
5. Mir, L. M., Moller, P. H., Andre, F., Gehl, J. Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54, 83-114 (2005). [Crossref]
6. Esser, A. T., Smith, K. C., Gowrishankar, T. R., Weaver, J. C. Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol Cancer Res Treat 6, 261-74 (2007).
7. Davalos, R. V., Mir, L. M., Rubinsky, B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 33, 223-231 (2005).[Crossref]
8. Miller, L., Leor, J., Rubinsky, B. Cancer cells ablation with irreversible electroporation. Tech Cancer Res Treat 4, 699-706 (2005).
9. Edd, J. F., Horowitz, L., Davalos, R. F., Mir, L. M., Rubinsky, B. In-vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biom Eng 53, 1409-15 (2006). [Crossref]
10. Rubinsky, B., Onik, G., Mikus, P. Irreversible Electroporation: A New Ablation Modality – Clinical Implications. Tech Cancer Res Treat 6, 37-48 (2007).
11. Lavee, J., Onik, G., Mikus, P., Rubinsky, B. Novel Non-Thermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation. The Heart Surgery Forum 10, E162-7 (2007). [Crossref]
12. Al-Sakere, B., Andre´, F., Bernat, C., Connault, E., Opolon, P., Davalos, R. V., Rubinsky, B., Mir, L. M. Tumor Ablation with Irreversible Electroporation. PLoS ONE 2, e1135 (2007). [Crossref]
13. Jones, M., Geddes, L. A. Strength-duration curves for cardiac pacemaking and ventricular fibrillation. Cardiovasc Res Cent Bull 15, 101-12 (1977).
14. Thomson, K. R., Cheung, W., Ellis, S. J., Park, D., Kavnoudias, H., Loader-Oliver, D., Roberts, S., Evans, P., Ball, C., Haydon, A. Investigation of the Safety of Irreversible Electroporation in Humans, J Vasc Interv Radiol 22, 611-21 (2011). [Crossref]
15. Daskalov, I., Mudrov, N., Peycheva, E. Exploring new instrumentation parameters for electrochemotherapy – Attacking tumors with bursts of biphasic pulses instead of single pulses. IEEE Eng Med Biol Mag 18, 62-66 (1999). [Crossref]
16. Arena, C. B., Sano, M. B., Rossmeisl, J. H., Caldwell, J. L., Garcia, P. A., Rylander, M. N., Davalos, R. V., High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction. Biomed Eng Online 10, 102 (2011). [Crossref]
17. Cohen, M. L., Zettl, A. The physics of boron nitride nanotubes. Phys Today 63, 34-38 (2010).
18. Ciofani, G., Ricotti, L., Danti, S., Moscato, S., Nesti, C., D’Alessandro, D., Dinucci, D., Chiellini, F., Pietrabissa, A., Petrini, M., Menciassi, A. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation. Int J Nanomedicine 5, 285-89 (2010).
19. Horváth, L., Magrez, A., Golberg, D., Zhi, C., Bando, Y., Smajda, R., Horváth, E., Forró, L., Schwaller, B. In vitro Investigation of the Cellular Toxicity of Boron Nitride Nanotubes. ACS Nano 5, 3800-10 (2011). [Crossref]
10. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A., Cytocompatibility, interactions and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnology and Bioengineering 101, 850-58 (2008). [Crossref]
11. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A. Boron nitride nanotubes: an innovative tool for nano medicine. Nano Today 4, 8-10 (2008). [Crossref]
12. Ciofani, G., Raffa, V., Menciassi, A., Dario, P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosc Nanotech 8, 6223-31 (2008). [Crossref]
13. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A. Folate functionalised boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy. Nanoscale Res Lett 4, 113-121 (2009). [Crossref]
14. Lahiri, D., Rouzaud, F., Richard, T., Keshri, A. K., Bakshi, S. R., Kos, L., Agarwal, A. Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater Sep 6(9), 3524-33 (2010). [Crossref]
15. Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., Bertozzi, C. R., Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. J Am Chem Soc 131, 890-891 (2009). [Crossref]
16. Poland, C. A.,, Duffin, R., Kinloch, I., Maynard, A., WallaceWA, H., Seaton, A., et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 513:423-8 (2008). [Crossref]
17. Raffa, V., Ciofani, G., Cuschieri, A. Enhanced low voltage cell electropermeabilitazion by boron nitride nanotubes. Nanotechnology 20, 075104-10 (2009). [Crossref]
18. Smith, M. W., Jordan, K. C., Park, C., Kim, J.-W., Lillehei, P. T., Crooks, R., Harrison, J. S. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method, Nanotechnology 20, 505604-10 (2009). [Crossref]
19. Neumann, E., Kakorin, S., Toensing, K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48, 3-16 (1999). [Crossref]
20. Guo, G. Y., Ishibashi, S., Tamura, T., Terakura, K. Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations. Phys Rev B 75, 245403-9 (2007). [Crossref]
21. Rubio, A., Corkill, J. L., Cohen, M. L. Theory of graphitic boron nitride nanotubes. Phys Rev B 49, 5081-84 (1994). [Crossref]
22. Blasé, X., Rubio, A., Louie, S. G., Cohen, M. L. Quasiparticle band structure of hexagonal boron-nitride and related systems. Phys Rev B 51, 6868-6875 (1995).[Crossref]
23. Kozinsky, B., Marzari, N. Static dielectric properties of carbon nanotubes from first-principles. Phys Rev Lett 96, 166801-4 (2006). [Crossref]
24. Raffa, V., Ciofani, G., Vittorio, O., Pensabene, V., Cuschieri, A. Carbon nanotube-enhanced cell electropermeabilisation. Biolectrochemistry 79, 136-141 (2010). [Crossref]
25. Golberg, D., Bando, Y., Han, W., Kurashima, K., Sato, T. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem Phys Lett 308, 337-342 (1999).
26. Lee, E. W., Chen, C., Prieto, V. E., Dry, S. M., Loh, C. T., Kee, S. T. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255, 426-33 (2010). [Crossref]
27. Tsong, T. Y. Electroporation of cell membranes. Biophysical Journal 60, 297-306 (1991).

This article can be accessed at PubMed:

Purchase Downloadable Article

Corporate User


University/Academic User


Received: June 30, 2011; Revised: December 20, 2011 Accepted: January 13, 2012; Epub: March 28, 2012.

TCRT October 2012

category image
Volume 11
No.5 (409-527)
October 2012
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500258

V. Raffa, Ph.D.1,2*†
C. Riggio, M.Sc.1†
M. W. Smith, Ph.D.3
K. C. Jordan, Ph.D.4
W. Cao, Ph.D.5
A. Cuschieri, FRS.1

1Life Science Institute, Scuola Superiore Sant’Anna, Pisa, Italy
2Department of Biology, University of Pisa, Pisa, Italy
3NASA Langley Research Centre, Hampton, VA, USA
4Jefferson Lab, Jefferson National Accelerator Facility, Newport News, VA, USA
5Old Dominion University, Newport News, VA, USA
These authors equally contributing.