About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch
Technical Note

Comparison Between Prone and Supine Patient Setup for Spine Stereotactic Body Radiosurgery (229-236)

This paper investigates the dosimetric characteristics of stereotactic body radiotherapy (SBRT) treatment plans of spine patients in the prone position compared to the supine position. A feasibility study for treating spine patients in the prone position using a fiducial-less tracking method is presented. One patient with a multilevel spinal metastasis was simulated for SBRT treatment in both the supine and prone position. CT scans of the patient were acquired, and treatment plans were created using the CyberKnife® planning platform. The potential advantage of the prone setup as a function of lesion location and number of vertebral bodies involved was studied for targets extending over 1, 2 and 3 consecutive vertebral bodies in the thoracic and lumbar spine. The same process was repeated on an anthropomorphic phantom. A dose of 30 Gy in 5 fractions was prescribed to 95% of the tumor volume and the dose to the cord was limited to 25 Gy. To investigate the feasibility of a fiducial-less tracking method in the prone setup, the patient was positioned prone on the treatment table and the spine motion was monitored as a function of time. Patient movement with the respiratory cycle was reduced by means of a belly-board. Plans in the prone and supine position achieved similar tumor coverage and sparing of the critical structures immediately adjacent to the spine (such as cord and esophagus). However, the prone plans systematically resulted in a lower dose to the normal structures located in the anterior part of the body (such as heart for thoracic cases; stomach, lower gastrointestinal tract and liver for lumbar cases). In addition, prone plans resulted in a lower number of monitor units compared to supine plans.

Key words: Spine; Stereotactic Body Radiotherapy (SBRT); Prone Position; CyberKnife.

This article can be cited as:
Descovich, M. Ma, L. Chuang, CF. Larson, DA. Barani, IJ. Comparison Between Prone and Supine Patient Setup for Spine Stereotactic Body Radiosurgery Technol Cancer Res Treat. 11, 229-236 (2012). DOI: 10.7785/tcrt.2012.500291


1. Chang, U. K., Rhee, C. H., Youn, S. M., Lee, D. H., Park, S. Q. Radiosurgery using the Cyberknife for benign spinal tumors: Korea Cancer Center Hospital experience. J Neurooncol 101, 91-9 (2011).[Crossref]
2. Choi, C. Y., Adler, J. R., Gibbs, I. C., Chang, S. D., Jackson, P. S., Minn, A. Y., Lieberson, R. E., Soltys, S. G. Stereotactic radiosurgery for treatment of spinal metastases recurring in close proximity to previously irradiated spinal cord. Int J Radiat Oncol Biol Phys 78, 499-506 (2010). [Crossref]
3. Dodd, R. L., Ryu, M. R., Kamnerdsupaphon, P., Gibbs, I. C., Chang, S. D., Jr., Adler, J. R., Jr. CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 58, 674-85 (2006). [Crossref]
4. Gagnon, G. J., Nasr, N. M., Liao, J. J., Molzahn, I., Marsh, D., McRae, D., Henderson, F. C., Sr. Treatment of spinal tumors using cyberknife fractionated stereotactic radiosurgery: pain and quality-of-life assessment after treatment in 200 patients. Neurosurgery 64, 297-306 (2009).
5. Gibbs, I. C. Spinal and paraspinal lesions: the role of stereotactic body radiotherapy. Front Radiat Ther Oncol 40, 407-14 (2007).
6. Hsu, W., Nguyen, T., Kleinberg, L., Ford, E. C., Rigamonti, D., Gokaslan, Z. L., Lim, M. Stereotactic radiosurgery for spine tumors: review of current literature. Stereotact Funct Neurosurg 88, 315-21 (2010).[Crossref]
7. Sahgal, A., Bilsky, M., Chang, E. L., Ma, L., Yamada, Y., Rhines, L. D., Letourneau, D., Foote, M., Yu, E., Larson, D. A., Fehlings, M. G. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine 14, 151-66 (2011). [Crossref]
8. Ryu, S., Jin, R., Jin, J. Y., Chen, Q., Rock, J., Anderson, J., Movsas, B. Pain control by image-guided radiosurgery for solitary spinal metastasis. J Pain Symptom Manage 35, 292-8 (2008). [Crossref]
9. Jin, R., Rock, J., Jin, J. Y., Janakiraman, N., Kim, J. H., Movsas, B., Ryu, S. Single fraction spine radiosurgery for myeloma epidural spinal cord compression. J Exp Ther Oncol 8, 35-41 (2009).
10. Gerszten, P. C., Burton, S. A., Ozhasoglu, C., Vogel, W. J., Welch, W. C., Baar, J., Friedland, D. M. Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J Neurosurg Spine 3, 288-95 (2005).
11. Gerszten, P. C., Burton, S. A., Belani, C. P., Ramalingam, S., Friedland, D. M., Ozhasoglu, C., Quinn, A. E., McCue, K. J., Welch, W. C. Radiosurgery for the treatment of spinal lung metastases. Cancer 107, 2653-61 (2006). [Crossref]
12. Jin, J. Y., Chen, Q., Jin, R., Rock, J., Anderson, J., Li, S., Movsas, B., Ryu, S. Technical and clinical experience with spine radiosurgery: a new technology for management of localized spine metastases. Technol Cancer Res Treat 6, 127-33 (2007).
13. Sahgal, A., Ma, L., Gibbs, I., Gerszten, P. C., Ryu, S., Soltys, S., Weinberg, V., Wong, S., Chang, E., Fowler, J., Larson, D. A. Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77, 548-53 (2010). [Crossref]
14. Foote, M., Letourneau, D., Hyde, D., Massicotte, E., Rampersaud, R., Fehlings, M., Fisher, C., Lewis, S., Macchia, N. L., Yu, E., Laperriere, N. J., Sahgal, A. Technique for stereotactic body radiotherapy for spinal metastases. J Clin Neurosci 18, 276-9 (2011). [Crossref]
15. Kilby, W., Dooley, J. R., Kuduvalli, G., Sayeh, S., Maurer, C. R., Jr. The CyberKnife Robotic Radiosurgery System in 2010. Technol Cancer Res Treat 9, 433-52 (2010).
16. Murphy, M. J. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 29, 334-44 (2002). [Crossref]
17. Ho, A. K., Fu, D., Cotrutz, C., Hancock, S. L., Chang, S. D., Gibbs, I. C., Maurer, C. R., Jr., Adler, J. R., Jr. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 60, ONS147-56; discussion ONS56 (2007). [Crossref]
18. Hoogeman, M., Prevost, J. B., Nuyttens, J., Poll, J., Levendag, P., Heijmen, B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys 74, 297-303 (2009). [Crossref]
19. Furweger, C., Drexler, C., Kufeld, M., Muacevic, A., Wowra, B., Schlaefer, A. Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78, 937-45 (2010). [Crossref]
20. Furweger, C., Drexler, C., Kufeld, M., Wowra, B. Feasibility of Fiducial-free prone-position treatments with CyberKnife for lower lumbar/sacral spine lesions. PeerEmedcom (2011).
21. Sahgal, A., Chuang, C., Larson, D., Huang, K., Petti, P., Weinstein, P., Ma, L. Split-volume treatment planning of multiple consecutive vertebral body metastases for cyberknife image-guided robotic radiosurgery. Med Dosim 33, 175-9 (2008). [Crossref]
22. Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93(Suppl 3), 219-22 (2000).

This article can be accessed at PubMed:

Purchase Downloadable Article

Corporate User


University/Academic User


Received: October 4, 2011; Revised: December 30, 2011; Accepted: January 12, 2012

TCRT June 2012

category image
Volume 11
No.3 (203-289)
June 2012
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500291

Martina Descovich, Ph.D.*
Lijun Ma, Ph.D.
Cynthia F. Chuang, Ph.D.
David A. Larson, M.D., Ph.D.
Igor J. Barani, M.D.

Department of Radiation Oncology, University of California San Francisco San Francisco, CA

*Corresponding author:
Martina Descovich, Ph.D.
Phone: 415-353-9844
Fax: 415-353-9883
E-mail: mdescovich@radonc.ucsf.edu