About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch

Impact of Dose Hot Spots on Spinal Cord Tolerance Following Stereotactic Body Radiotherapy: A Generalized Biological Effective Dose Analysis (35-40)

The purpose of this study was to investigate the effects of high-dose inhomogeneous irradiation to small volumes of spinal cord with a new generalized biological effective dose (gBED) analysis for spine stereotactic body radiotherapy (SBRT). The gBED was applied to spinal cord dosimetric data (contoured per the thecal sac) at specified volumes for a cohort of five patients with radiation-induced myelopathy (RM) and compared to nineteen patients without RM post-SBRT. The spinal cord gBED was calculated and normalized to a conventional 2-Gy equivalent dose fraction scheme (α/β 5 2 Gy for late toxicity). Differences between the conventional BED and those gBED calculations by accounting for small-volume dosing within the spinal cord was observed. Statistically significant differences in the mean gBED between the RM group and the non-RM group was observed both at the maximum point volume (gBED of 66 Gy vs. 37 Gy (p 5 0.01), respectively) and at the 0.1 cm3 volume (gBED of 53 Gy vs. 28 Gy (p 5 0.01), respectively). No significant difference at the 0.1 cm3 volume was observed based on the mean BED comparisons. No significant differences were observed at the larger 1 cm3, 2 cm3 or 5 cm3 volumes for either BED or gBED comparisons. We conclude that differences in dose hot spots characteristics within small inhomogenously irradiated volumes of spinal cord can affect spinal cord tolerance following SBRT treatments.

Key words: Myelopathy; Radiation tolerance; Stereotactic body radiotherapy; Biologic effective dose; Biological modeling.

This article can be cited as:
Sahgal, A., Ma, L., Fowler, J., Weinberg, V., Gibbs, I., Gerszten, P.C., Ryu, S., Soltys, S., Chang, E., Wong, C.S., Larson, D.A. Impact of Dose Hot Spots on Spinal Cord Tolerance Following Stereotactic Body Radiotherapy: A Generalized Biological Effective Dose Analysis Technol Cancer Res Treat. 11, 35-40 (2012). DOI: 10.7785/tcrt.2012.500232


1. Sahgal, A., Ames, C., Chou, D., Ma, L., Huang, K., Xu, W., Chin, C., Weinberg, V., Chuang, C., Weinstein, P., Larson, D. A. Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys 74, 723-731 (2009). [Crossref]
2. Sahgal, A., Chou, D., Ames, C., Ma, L., Lamborn, K., Huang, K., Chuang, C., Aiken, A., Petti, P., Weinstein, P., Larson, D. Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: the University of California San Francisco preliminary experience. Technol Cancer Res Treat 6, 595-604 (2007).
3. Sahgal, A., Ma, L., Gibbs, I., Gerszten, P. C., Ryu, S., Scoltys, S., Weinberg, V., Wong, S., Chang, E., Fowler, J. F., Larson, D. A. Spinal cord tolerance for spine stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77, 548-553 (2010). [Crossref]
4. Ma, L., Sahgal, A., Cozzi, L., Chang, E., Shiu, A., Letourneau, D., Yin, F. F., Fogliata, A., Kaissl, W., Hyde, D., Laperriere, N. J., Shrieve, D. C., Larson, D. A. Apparatus-dependent dosimetric differences in spine stereotactic body radiotherapy. Technol Cancer Res Treat 9, 563-574 (2010).
5. Fowler, J. F. The linear-quadratic formula and progress in fraction ated radiotherapy. Br J Radiol 62, 679-694 (1989).
6. Fowler, J. F. Alpha, beta, and surviving fraction. Int J Radiat Oncol Biol Phys 24, 188-189 (1992).
7. Fowler, J. F. Modelling altered fractionation schedules. BJR Suppl 24, 187-192 (1992).
8. Sahgal, A., Larson, D. A., Chang, E. L. Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys 71, 652-665 (2008).[Crossref]
9. Bijl, H. P., van Luijk, P., Coppes, R. P., Schippers, J. M., Konings, A. W., van der Kogel, A. J. Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52, 205-211 (2002). [Crossref]
10. Bijl, H. P., van Luijk, P., Coppes, R. P., Schippers, J. M., Konings, A. W., van der Kogel, A. J. Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57, 274-281 (2003). [Crossref]
11. Bijl, H. P., van Luijk, P., Coppes, R. P., Schippers, J. M., Konings, A. W., van der Kogel, A. J. Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. Int J Radiat Oncol Biol Phys 64, 1204-1210 (2006). [Crossref]
12. Medin, P. M., Foster, R. D., van der Kogel, A. J., Sayre, J. W., McBride, W. H., Solberg, T. D. Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model. Int J Radiat Oncol Biol Phys 79, 226-232 (2011).[Crossref]
13. Lyman, J. T., Wolbarst, A. B. Optimization of radiation therapy, IV: 13. A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17, 433-436 (1989).
14. Emami, B., Lyman, J., Brown, A., Coia, L., Goitein, M., Munzenrider, J. E., Shank, B., Solin, L. J., Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21, 109-122 (1991).
15. Clark, B. G., Souhami, L., Pla, C., Al-Amro, A. S., Bahary, J. P., Villemure, J. G., Caron, J. L., Olivier, A., Podgorsak, E. B. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 40, 667-675 (1998).
16. Steel, G. G., Deacon, J. M., Duchesne, G. M., Horwich, A., Kelland, L. R., Peacock, J. H. The dose-rate effect in human tumour cells. Radiother Oncol 9, 299-310 (1987). [Crossref]
17. Fowler, J. F., Welsh, J. S., Howard, S. P. Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys 59, 242-249 (2004). [Crossref]
18. Sachs, R. K., Hahnfeld, P., Brenner, D. J. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol 72, 351-374 (1997). [Crossref]

This article can be accessed at PubMed:

Purchase Downloadable Article

Corporate User


University/Academic User


Received: March 3, 2011; Revised: June 6, 2011; Accepted: July 19, 2011

TCRT February 2012

category image
Volume 11
No.1 (1-104)
February 2012
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500232

A. Sahgal, M.D.1
L. Ma, Ph.D.*
J. Fowler, D.Sc., Ph.D.3
V. Weinberg, Ph.D.4
I. Gibbs, M.D.5
P. C. Gerszten, M.D.6
S. Ryu, M.D.7
S. Soltys, M.D.5
E. Chang, M.D.8
C. S. Wong, M.D.9
D. A. Larson, M.D., Ph.D.2

1Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
2Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
3Department of Human Oncology and Medical Physics, University of Wisconsin, Madison, USA
4University of California San Francisco Helen Diller Family Comprehensive Cancer Center Biostatistics Core, San Francisco, California, USA
5Department of Radiation Oncology, Stanford University, Stanford, California, USA