About TCRT

TCRT has been on continuous publication since 2002. It is covered currently by all the major data systems such as Medline, PubMed, Web of Science, Thomson's ISI and SCI and Scopus.

The 2012 Impact factor for TCRT is 1.943

TCRT Open Access
TCRT seeks original articles
Cancer Watch

Monitoring the Response to Primary Medical Therapy for Breast Cancer Using Three- Dimensional Time-Resolved Optical Mammography (533-547)

Primary medical therapy is used to reduce tumour size prior to surgery in women with locally advanced breast cancer. Optical tomography is a functional imaging technique using near- infrared light to produce three-dimensional breast images of tissue oxygen saturation and haemoglobin concentration. Its advantages include the ability to display quantitative physiological information, and to allow repeated scans without the hazards associated with exposure to ionising radiation. There is a need for a non-invasive functional imaging tool to evaluate response to treatment, so that non-responders can be given the opportunity to change their treatment regimen. Here, we evaluate the use of optical tomography for this purpose. Four women with newly diagnosed breast cancer who were about to undergo primary medical therapy gave informed and voluntary consent to take part in the study. Changes in physiological and optical properties within the tumour were evaluated during the course of neoadjuvant chemotherapy. Optical imaging was performed prior to treatment, after the first cycle of chemotherapy, halfway through, and on completion of chemotherapy. Images of light absorption and scatter at two wavelengths were produced, from which images of total haemoglobin concentration and oxygen saturation were derived. All patients that showed a good or complete response to treatment on MRI showed a corresponding recovery in the haemoglobin concentration images. Changes in mean tumour total haemoglobin concentration could be seen four weeks into treatment. The tumour oxygen saturation was low compared to background in three out of four patients, and also showed a return to baseline over treatment. Optical imaging of the breast is feasible during primary medical therapy and can be used to assess response to treatment over six months.

Key words: Optical mammography; 3D imaging; Primary medical therapy; Monitoring response to treatment.





This article can be cited as:This article can be cited as:
Enfield, L.C., Cantanhede, G., Westbroek, D., Douek, M, Purushotham, A.D., Hebden, J.C., Gibson, A.P. Monitoring the Response to Primary Medical Therapy for Breast Cancer Using Three- Dimensional Time-Resolved Optical MammographyTechnol Cancer Res Treat. 10, 533-547 (2011) DOI: 10.7785/tcrt.2012.500220

References

1. Hebden, J. C., Arridge, S. R., Delpy, D. T. Optical imaging in medicine I: Experimental techniques. Phys Med Biol 42, 825-840 (1997).[Crossref]
2. Cerussi, A. E., Berger, A. J., Bevilacqua, F., Shah, N., Jakubowski, D., Butler, J., Holcombe, R. F., Tromberg, B. J. Sources of absorption and scattering contrast for near infrared optical mammography. Acad Radiol 8, 211-218 (2001). [Crossref]
3. Colak, S. B., van der Mark, M. B., Hooft, G. W., Hoogenraad, J. H., van der Linden, E. S., Kuijpers, F. A. Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Quantum Electron 5, 1143-1158 (1999). [Crossref]
4. Peters, V. G., Wyman, D. R., Patterson, M. S., Frank, G. L. Optical properties of normal and dsiseased human breast tissue in the visible and near infrared. Phys Med Biol 35, 1317-1334 (1990).
5. Cheng, X., Mao, J., Bush, R., Kopans, D. B., Moore, R. H., Chorlton, M. Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. Appl Opt 42, 6412-6421 (2003).
6. Jiang, S., Pogue, B. W., McBride, T. O., Paulsen, K. D. Quantative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom. J Biomed Opt 8, 308-315 (2003).
7. Srinivasan, S., Pogue, B. W., Jiang, S., Dehghani, H., Kogel, C., Soho, S., Gibson, J. J., Tosteson, T. D., Poplack, S. P., Paulsen, K. D. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared tomography. PNAS 100, 12349-12354 (2003). [Crossref]
8. Das, B. B., Yoo, K. M., Alfano, R. R. Ultrafast time-gated imaging in thick tissues: a step toward optical mammography. Opt Lett 18, 1092-1094 (1993).
9. Alfano, R. R., Liang, X., Wang, L., Ho, P. P. Time-resolved imaging of translucent droplets in highly scattering turbid media. Science  264, 1913-1915 (1994).
10. Cai, W., Das, B. B., Liu, F., Zevallos, M., Lax, M., Alfano, R. R. Time resolved optical diffusion topographic reconstruction in highly scattering media. Proc Natl Acad Sci USA 93, 13561-13564 (1996).
11. Arridge, S. R., Hebden, J. C. Optical imaging in medicine II: Modelling and reconstruction. Phys Med Biol 42, 841-853 (1997). [Crossref]
12. Dehghani, H., Srinivasan, S., Pogue, B. W., Gibson, A. P. Numerical modelling and image reconstruction in diffuse optical tomography. Phil Trans Roy Soc A 367, 3073-93 (2009). [Crossref]
13. Leff, D. R., Warren, O., Enfield, L. C., Gibson, A. P., Athanasiou, T., Pattern, D. K., Hebden, J. C., Yang, G. Z., Darzi, A. Diffuse optical imaging of the healthy and diseased breast - a systematic review. Breast Cancer Res Treat 108, 9-22 (2008). [Crossref]
14. Lee, K. Optical mammography: Diffuse optical imaging of breast cancer. World J Clin Oncol 10, 64-72 (2011).
15. Demos, S. G., Vogel, A. J., Gandjbakhche, A. H. Advances in optical spectroscopy and imaging of breast lesions. J Mammary Gland Biol Neoplasia 11, 165-81 (2006)[Crossref]
16. Tromberg. B. J., Cerussi, A., Shah, N., Compton, M., Durkin, A., Hsiang, D., Butler, J., Mehta, R. Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7, 279-85 (2005).
17. Enfield, L. C., Gibson, A. P., Hebden, J. C., Douek, M. Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 4, 219-233 (2009). [Crossref]
18. Fisher, B., Bryant, J., Wolmark, N., Mamounas, E., Brown, A., Fisher, E. R., Wickerham, D. L., Begovic, M., DeCillis, A., Robidoux, A., Margolese, R. G., Cruz, A. B., Jr., Hoehn, J. L., Lees, A. W., Dimitrov, N. V., Bear, H. D. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16, 2672-85 (1998).
19. Liu, S. V., Melstrom, L., Yao, K., Russell, C. A., Sener, S. F. Neoadjuvant therapy for breast cancer. J Surg Oncol 101, 283-91 (2010). [Crossref]
20. Makris, A., Powles, T. J., Ashley, S. E., Chang, J., Hickish, T., Tidy, V. A., Nash, A. G., Ford, H. T. A reduction in the requirements for mastectomy in a randomized trial of neoadjuvant chemoendocrine therapy in primary breast cancer. Ann Oncol 9, 1179-84 (1998). [Crossref]
21. Scholl, S. M., Fourquet, A., Asselain, B., Pierga, J. Y., Vilcoq, J. R., Durand, J. C., Dorval, T., Palangié, T., Jouve, M., Beuzeboc, P., Garcio-Giralt, E., Salmon, R. J., de la Rochefordière, Campana, F., Pouillart, P. Neoadjuvant versus adjuvant chemotherapy in premenopausal patients with tumours considered too large for breast conserving surgery: preliminary results of a randomised trial: S6. Eur J Cancer 30A, 645-52 (1994). [Crossref]
22. Smith, I. E., Dowsett, M., Ebbs, S. R., Dixon, J. M., Skene, A., Blohmer, J. U., Ashley, S. E., Francis, S., Boeddinghaus, I., Walsh, G. IMPACT Trialists Group. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT] multicenter double-blind randomized trial. J Clin Oncol 23, 5108-16 (2005). [Crossref]
23. Liu, S. V., Melstrom, L., Yao, K., Russell, C. A., Sener, S. F. Neoadjuvant therapy for breast cancer. J Surg Oncol 101, 283-91 (2010). [Crossref]
24. Berg, W. A., Gutierrez, L., NessAiver, M. S., Carter, W. B., Bhargavan, M., Lewis, R. S., Ioffe, O. B. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233, 830-49 (2004). [Crossref]
25. Keune, J. D., Jeffe, D. B., Schootman, M., Hoffman, A., Gillanders, W. E., Aft, R. L. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer. Am J Surg 199, 477-84 (2010). [Crossref]
26. Chung, A., Giuliano, A. Axillary Staging in the Neoadjuvant Setting. Ann Surg Oncol 17, 2401-2410 (2010). [Crossref]
27. Hylton, N. MR imaging for assessment of breast cancer response to neoadjuvant chemotherapy. Magn Reson Imaging Clin N Am 14, 383-389 (2006). [Crossref]
28. Enriquez, L., Listinsky, J. Role of MRI in breast cancer management. Cleve Clin J Med 76, 525-532 (2009). [Crossref]
29. Douek, M., Tobias, J. How reliable is MRI for predicting extent of residual breast cancer with different primary medical therapies? Nat Clin Pract Oncol 2, 128-9 (2005). [Crossref]

30. Shah. N., Cerussi, A., Eker, C., Espinoza, J., Butler, J., Fishkin, J., Hornung, R., Tromberg, B. Non-invasive functional optical spectroscopy of human breast tissue. PNAS 98, 4420-4425 (2001).
31. Choe, R., Konecky, S. D., Corlu, A., Lee, K., Durduran, T., Busch, D. R., Pathak, S., Czerniecki, B. J., Tchou, J., Fraker, D. L., DeMichele, A., Chance, B., Arridge, S. R., Schweiger, M., Culver, J. P., Schnall, M. D., Putt, M. E., Rosen, M. A., Yodh, A. G. Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt 14, 024020 (2009). [Crossref]
32. Grosenick, D., Wabnitz, H., Moesta, K. T., Mucke, J., Schlag, P. M., Rinneberg, H. Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas. Phys Med Biol 50, 2451-2468 (2005). [Crossref]
33. Spinelli, L., Torricelli, A., Pifferi, A., Taroni, P., Danesini, G., Cubeddu, R. Characterization of female breast lesions from multi-wavelength time-resolved optical mammography. Phys Med Biol 50, 2489-2502 (2005). [Crossref]

34. Chance, B., Nioka, S., Zhang, J., Conant, E. F., Hwang, E., Briest, S., Orel, S. G., Schnall, M. D., Czerniecki, B. J. Breast cancer detection based on incremental biochemical and physiological properties of breast cancer: A six-year, two-site study. Acad Radiol 12, 925-933 (2005). [Crossref]
35. Jakubowski, D. B., Cerussi, A. E., Bevilacqua, F., Shah, N., Hsiang, D., Butler, J., Tromberg, B. J. Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J Biomed Opt 9, 230-8 (2004). [Crossref]

36. Shah, N. S., Gibbs, J., Wolverton, D., Cerussi, A., Hylton, N., Tromberg, B. J. Combined diffuse optical spectroscopy and contrast- enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study. J Biomed Opt 10, 051503 (2005). [Crossref]
37. Tromberg, B. J., Cerussi, A., Shah, N., Compton, M., Durkin, A., Hsiang, D., Butler, J., Mehta, R. Diffuse optics in breast cancer: detecting tumours in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7, 279-285 (2005).[Crossref]
38. Cerussi, A., Tanamai, V. W., Mehta, R. S., Hsiang, D., Butler, J., Tromberg, B. J. Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient. Acad Radiol 7, 1031-9 (2010). [Crossref]

39. Zhu, Q., Tannenbaum, S., Hegde, P., Kane, M., Xu, C., Kurtzman, S. H. Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization. Neoplasia 10, 1028-1040 (2008). [Crossref]
40. Zhou, C., Choe, R., Shah, N., Durduran, T., Yu, G., Durkin, A., Hsiang, D., Mehta, R., Butler, J., Cerussi, A., Tromberg, B. J., Yodh, A. G. Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J Biomed Opt 12, 051903 (2007). [Crossref]
41. Soliman, H., Gunasekara, A., Rycroft, M., Zubovits, J., Dent, R., Spayne, J., Yaffe, M. J., Czarnota, G. J. Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer. Clin Cancer Res 16, 2605-2614 (2010). [Crossref]
42. Zhu, Q., Tannenbaum, S., Hegde, P., Kane, M., Xu, C., Kurtzman, S. H. Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization. Neoplasia 10, 1028-1040 (2008). [Crossref]
43. Choe, R., Corlu, A., Lee, K., Durduran, T., Konecky, S. D., Grosicka-Koptyra, M., Arridge, S. R., Czernieki, B. J., Fraker, D. L., DeMichele, A., Chance, B., Rosen, M. A., Yodh, A. G. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Med Phys 32, 1128-1139 (2005). [Crossref]
44. Jiang, S., Pogue, B. W., Carpenter, C. M., Poplack, S. P., Wells, W. A., Kogel, C. A., Forero, J., Muffly, L. S., Schwartz, G. N., Paulsen, K. D., Kaufman, P. A. Evaluating tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography: case studies of tumor region of interest changes. Radiology 252, 551-560 (2009).
45. Pakalniskis, M. G., Wells, W. A., Schwab, M. C., Froehlich, H. M., Jian, S., Li, Z., Tosteson, T. D., Poplack, S. P., Kaufamn, P. A., Pogue, B. W., Paulsen, K. D. Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer? Radiology 259, 365-374 (2011).
46. Selb, J., Gibson, A. Diffuse Optical Imaging: Time Domain. Chapter in Handbook of Biomedical Optics. (Eds.) D. A. Boas, C. Pitris, N. Ramanujam. CRC Press, Taylor Francis Group (2011).
47. Jiang, S., Pogue, B. W., Laughney, A. M., Kogel, C. A., Paulsen, K. D. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging. Appl Opt 48, D130 (2009).
48. Carp, S. A., Kauffman, T., Fang, Q., Rafferty, E., Moore, R., Kopans, D., Boas, D. Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements. J Biomed Opt 11, 064016 (2006). [Crossref]
49. Schmidt, F. E. W., Fry, M. E., Hillman, E. M. C., Hebden, J. C., Delpy, D. T. A 32-channel time-resolved instrument for medical optical tomography. RSI 71, 256-265 (2000).
50. Jennions, D. K., Gibson, A. P., Everdell, N. L., Hebden, J. C., Becker W. Fast time-resolved optical tomography for 3D neonatal functional imaging. Biomed Opt Technical Digest SH45 (2006).
51. Yates, T. D., Hebden, J. C., Gibson, A. P., Everdell, N. L., Arridge, S. R., Douek, M. Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 50, 2503-2517 (2005). [Crossref]
52. Enfield, L. C., Gibson, A. P., Everdell, N. L., Delpy, D. T., Schweiger, M., Arridge, S. R., Richardson, C., Keshtgar, M., Douek, M., Hebden, J. C. Three-dimensional time-resolved optical mammography of the uncompressed breast. Appl Opt 46, 3628-3638 (2007). [Crossref]
53. Yates, T. D., Hebden, J. C., Gibson, A. P., Enfield, L. C., Everdell, N. L., Arridge, S. R., Delpy, D. T. Time-resolved optical mammography using a liquid coupled interface. J Biomed Opt 10, 054011 (2005). [Crossref]
54. Arridge, S. R., Schweiger, M. Image reconstruction in optical tomography. Philos T Roy Soc B 352, 717-726 (1997).
55. Matcher, S. J., Cope, M., Delpy, D. T. Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys Med Biol 38, 177-196 (1993). [Crossref]

56. Roblyer, D. M., Ueda, S., Cerussi, A. E., Tanamai, W., Durkin, A., Mehta, R. S., Hsiang, D., Butler, J., Tromberg, B. J. Oxyhemoglobin flare after the first day of neoadjuvant breast cancer chemotherapy predicts overall response. Cancer Research 70(Suppl. 2), 363S (2010).
57. Yates, T. D. Time-resolved optical tomography for the detection and specification of breast disease. Ph.D. Thesis, University of London (2005).
58. Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L., Verweij, J., Van Glabbeke, M., van Oosterom, A. T., Christian, M. C., Gwyther, S. G. New guidelines to evaluate the response to treatment in solid tumors. JNCI 92, 205-216 (2000).
59. Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., et al. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clinical Cancer Research 13, 4429-4434 (2007).
60. Günhan-Bilgen, I., Zekioglu, O., Üstün, E. E., Memis, A., Erhan, Y. Invasive micropapillary carcinoma of the breast: clinical, mammographic, and sonographic findings with histopathologic correlation. AJR 179, 927-931 (2002). [Crossref]
61. Cerussi, A. E., Tanamai, V. W., Hsiang, D., Butler, J., Mehta, R. S., Tromberg, B. J. Diffuse optical spectroscopy imaging (DOSI) predicts final pathological response in breast cancer patients treated with neoadjuvant chemotherapy. In Press.
62. Cerussi, A. E., Berger, A. J., Bevilacqua, F., Shah, N., Jakubowski, D., Butler, J., Holcombe, R. F., Tromberg, B. J. Sources of absorption and scattering contrast for near-infrared optical mammography. Acad Radiology 8, 211-218 (2001). [Crossref]
63. Zhu, Q., Scott, H., Kurtzman, S. H., Hegde, P., Tannenbaum, S., Kane, M., Huang, M., Chen, N. G., Jagjivan, B., Zarfos, K. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia 7, 263-270 (2005). [Crossref]
64. Macura, K. J., Ouwerkerk, R., Jacobs, M. A.,  Bluemke, D. A. Patterns of Enhancement on Breast MR Images: Interpretation and Imaging Pitfalls. Radiographics 26, 1719-1734 (2006). [Crossref]
65. Vaupel, P., Schlenger, K., Knoop, C., Hockel, M. Oxygenation of Human Tumors: Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. Cancer Res 51, 3316-3322 (1991).
66. Srinivasan, S., Pogue, B. W., Brooksby, B., Jiang, S., Dehghani, H., Kogel, C., Wells, W. A., Poplack, S. P.,  Paulsen, K. D. Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction. Technol Cancer Res Treat 4, 513-526 (2005).
67. Grosenick, D., Moesta, K. T., Wabnitz, H., Mucke, J., Stroszczynski, C.,  Macdonald, R.,  Schlag, P. M., Rinneberg, H. Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Appl Opt 42, 3170-3186 (2003).
68. Mortimer, J. E., Dehdashti, F., Siegel, B. A., Trinkaus, K., Katzenellenbogen, J. A., Welch, M. J. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19, 2797-2803 (2001).

This article can be accessed at PubMed:
http://www.ncbi.nlm.nih.gov/pubmed/22066594

Purchase Downloadable Article

Corporate User

$100.00

University/Academic User

$50.00

Received: June 3, 2011; Revised: September 14, 2011; Accepted: October 6, 2011

TCRT December 2011

category image
Volume 10
No.6 (505-634)
December 2011
ISSN 1533-0338

DOI: 10.7785/tcrt.2012.500220

L. C. Enfield, PhD1*
G. Cantanhede, MBBS, MSc2
D. Westbroek, MD, FRCS3
M. Douek, MB ChB, MD, FRCS3
A. D. Purushotham, MBBS, MD, FRCS3
J. C. Hebden, PhD1
A. P. Gibson, PhD1

1Department of Medical Physics and Bioengineering, University College London, Malet Place, London, WC1E 6BT, UK
2Research Department of General Surgery, University College London, Gower Street, London, WC1E 6BT, UK
3Department of Research Oncology, Kings College London, Strand, London, WC2R 2LS, UK

*Corresponding author:
L. C. Enfield, Ph.D.
Phone: +(44) 20 7679 0203
E-mail:
lenfield@medphys.ucl.ac.uk